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LElTER TO THE EDITOR 

Velocity correlations for turbulent shear flow 

M J Ortiz and A Ruiz de Elvira 
Departamento de Fisica, Universidad de Alcald, Campus, Aka16 de Henares, Madrid, Spain 

Received 28 March 1984 

Abstract. Spectral functions corresponding to velocity correlations are derived for fully 
developed turbulent shear flow in a plane channel. These functions follow rather simple 
differential equations. It is found that, for high shear, terms with different decay rates in 
orthogonal directions are needed. 

A profitable approach to the study of turbulent homogeneous flows is to analyse the 
effects that a weak mean strain produces on an existing homogeneous isotropic turbulent 
field. It is well known that, for small values of the shear, one of these effects is a 
stretching of the vortices in the direction of the mean flow. It has been pointed out 
by Leslie (1973) that a formal expansion for the correlations between components of 
the fluctuating velocities in wavenumber space is possible: 

q1m(k, t )  = q10m)(k, t )  + q11n)(k, 1) (1) 

where is the correlation tensor of the background isotropic turbulent field, and 
4:; is a first-order correction corresponding to the correlation between this background 
field and the fluctuations induced by the mean strain. This expansion can be considered 
as a division of qtm into terms with different angular dependences. Thus, 4% can be 
written as the product of a geometrical isotropic tensor times a function of the modulus 
of k, and likewise, as an anisotropic geometrical tensor times another different 
function of the modulus of k. This anisotropic factor must then account for all the 
effects of anisotropy present in the flow. 

For real flows, Leslie (1970) suggested an expansion formally analogous to (1). It 
has been explicitly formulated for a plane channel but this formulation can be extended 
to other real flows. In the following xI is the streamwise coordinate while x2 is the 
coordinate in the direction normal to the channel walls. In order to obviate the difficulty 
of going to the wavenumber space, we introduce, following Leslie, the transformation: 

qlm(k,  t )  = j d(x - x')q,,,,(x - x', Y) exp[-ik. (x -x')] 
(2.rr) 'I 

where Y = i(x2 +x i )  is the x2 centroid coordinate of x and x'. For this spectrum, the 
proposed expansion reads 

where I (  Y) is a correlation length, characteristic for each flow. The angular factor 
P, , (k)  has the form of a general isotropic tensor in k-space, while V,,(k)  is an 
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antisymmetric tensor, except for V I Z =  Vzl; in this way it does not contribute to the 
total energy of the field, but does to the Reynolds stress. The term Eo( Y) is the turbulent 
energy at the point Y. f ( "  and f " '  are spectral functions, supposed to be universal, 
i.e. valid for all kinds of real turbulent flows. 

The convenience of performing an explicit calculation of the spectrum associated 
to the correlations in the inertial layer of a turbulent plane channel flow was suggested 
by Leslie (1973). This calculation would allow one to test the assumption of self- 
similarity for the symmetric part of the spectrum and to determine a characteristic 
length in this region. Besides, if it were possible to find an expansion of the form of 
( I ) ,  it would yield the form of functions f ( ' )  and f ' " .  Such a calculation has been 
reported in Ortiz and Ruiz de Elvira (1984), in the following referred to as (I). We 
started with the equations for the correlations obtained using the DI approximation 
given by Kraichnan (1964). As these include integro-differential operators and a 
diagonalisation has not been found possible in our case, we tried some approximations, 
based on the characteristics of the flow. Among these are a reduction of the problem 
to two dimensions, a localisation of the pressure operator and an iterative procedure 
for solving the resulting equations. The validity of these approximations is checked 
by the good agreement between our calculated correlations and the available experi- 
mental data. The results presented in (I) seem conclusive with respect to the self- 
similarity of the spectrum associated to the symmetric part of the correlations. The 
functional form of the length scale l (  Y )  obtained is in excellent agreement with 
Prandtl's mixing length. In (I)  we also presented some results for the spectral functions. 

The aim of this letter is to report recent and more detailed calculations which give 
us a new insight into the analysis of the spectrum, in particular the effects of a non-small 
shear on the vortices. 

We are looking for functions of the modulus of the wavevector k or, equivalently, 
of the modulus of (x - x'). Therefore we try writing our calculated correlations as the 
sum of two terms. The first one, i', is invariant under an interchange of the two 
variables (xI -x i )  and (x2-x;). The second, i2, takes into account the big difference 
in the decay rates of the correlations found in (I) for the two orthogonal directions 
xl and xz: 

(4) 

In a similar way, the term a" can be split into an even function of each of the 

GI,@ - x', Y) = I (  Y){a'f,(x - x', Y) + q [ + I  - 4 1 ,  (xz - Xk), Yll. 

The above mentioned difference in the decay rates is represented by the factor a. 

coordinates ( x l  -x:), plus an odd function of the same set of coordinates: 

q ) ( X  - x', Y) = a":,'"(x - x', Y) + a",'"'(x - x', Y). 

4,,(k Y) = I (  Y)[a::"(k, y> + aY0)(k, Y) + a'"(k , /a ,  kz, VI. 

( 5 )  

If we Fourier transform (4) using definition (2), we obtain: 

(6) 

and a:,'o) by combinations of analytical 
functions. We only show here the result of these approximations for the case i = j  = 2: 

We have approximated the functions 

a$?)(k, Y)==0.391"( Y)&Kl,4[(0.61/2)(Z( Y ) k ) * ]  (7) 

where k = ( k :  + k:)"'. I( Y) = 40.45 P9")mm is the length scale in the logarithmic 
layer as determined in (I) .  Kl,4 is the modified Bessel function of the second kind. 
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For the term a::.) we have found 

ay;)( k, Y) = (@/2&)[ 1 - 2p(2k:  + 2 k: + 5k ,  k2) ]  exp[-P(k: + k: + kl k2)l ( 8 )  

where p = 12( Y)/& 
It is interesting to note that the third term a f ’ ( k , / a ,  k l ,  Y) is of the same order of 

magnitude as U!;’) and furthermore it is of qualitative importance for the dynamics of 
correlations. Therefore it cannot be dropped, although it cannot be written out as a 
simple combination of analytical functions. 

Function a$?) was obtained by Edwards and McComb (1971) as the solution of an 
equation related to the energy spectrum in the homogeneous isotropic turbulence. In 
their work they started by substituting the equation for transport in a turbulent flow 
by a local Fokker-Planck type equation. After scaling conveniently and discarding 
terms of high order in the wavenumber, they obtained for a function A ( k ) ,  related to 
the energy spectrum E ( k ) ,  the equation 

(d2/dk2- y Z k 2 ) A ( k ) = 0  (9) 

A(k) = J%4[(Y/2)k21 (10) 

which has as a solution 

similar to (7). In figure 1 we present the plot of our calculated ay;)( k, Y) for Y = 4 mm 
and function A( k )  with y = 0.6 1 l’( Y). 

Function a:?) follows the equation 

Figure 1. Even spectral function Figure 2. Function fo’(/( Y ) k )  for three different values of 
a $ y 1 ( k ) y = 4 m m ,  in arbitrary units. x centroid coordinate Y, in arbitrary units. All three curves are 
denotes results of calculation reported in normalised to the same maximum value. Slashes in the curve 
( I ) .  The curve represents the function for Y = 3  mm denote the region for which f o l =  k-’I3. Chain 
J k  K l , , [ ( a / 2 ) k 2 1 .  curve, Y = Z m m ;  full curve, Y = 3  mm; broken curve, Y =  

4 mm. 
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where the operator L ,  is given by the following combination of first-order derivatives: 

L ,  = k ,  k2(Z - A) +!(E + 2 1 A) 

= +ak2)/(kl +k2), A = ( a k ,  - a k 2 > / ( k l  - k d -  (12) 

Although (1  1) is a partial differential equation, its structure is formally analogous 
to that of the Bessel ordinary differential equation, and therefore it is related to (10). 

At this point, to compare our expressions with Leslie’s proposal (3) we must set 
apart from a”) an isotropic term and similarly, from ay! ’  an anisotropic one. This 
presents some difficulty since the general expression for Pi j (k)  is obtained using the 
continuity equation in three dimensions. It is not feasible to take k, = 0, since this is 
equivalent to supposing (x3 - xi)  = m. We therefore worked in configuration space and 
divided age)(x-x’, Y )  at (x3-x;)=0 into an isotropic tensor and a residual term. 
The Fourier transfom of the isotropic tensor has the form given in (3)  with function 
f‘O’( I (  Y )  k )  given by 

f ‘”( l (  Y ) k )  = ( I (  Y )k )9 ’2Kl /4 [0 .97 ( I (  Y ) k ) ’ ]  

Eo( Y) = 0.047 Y3.’/(1( Y))”’. 

(13) 
and 

(14) 

The fitting of Eo( Y )  to our results was done with determination coefficient r2 = 0.997. 
In figure 2 we have plotted f ( O )  against its argument. For intermediate values of 
wavenumber k we can identify a range where the function behaves like k-5 /3 .  

Term a!;’) can likewise be split into an anisotropic tensor and a residual term. For 
the anisotropic part we have identified the function f ( ’ ) ( l (  Y ) k ) :  

f(l)(l( Y)k) = ( I (  Y)Q6 exP[-E(4 Y)k)*I,  E = 1.66 (15) 

which for intermediate values of the wavenumber behaves like k-’l3. 
The functional forms found for f ( O )  and f‘” seem encouraging. Nevertheless, the 

spectrum contains more terms than is implied by equation (3): term U:) and the two 
residual terms produced by the division into isotropic and anisotropic parts of a!” 
and U;’). These terms are not only not small but also qualitatively important. Our 
calculation seems conclusive in the sense that for high shear it is not enough to express 
its effect by the second term in (3). Other terms, accounting for the different decay 
rates along orthogonal axes, are needed. On the other hand, our results support the 
universality of functions and f“). 

As the identification of the factors P q ( k )  and Vi,(k) is problematic in the two- 
dimensional case, it is important to extend our calculations to three dimensions before 
analysing these additional terms. A preliminary study is under way. 

We wish to thank Professor D C Leslie for stimulating correspondence. 
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